arctanx的导数
发布时间:2025-10-31 09:45:01

arctanx的导数:y=arctanx,x=tany,dx/dy=sec²y=tan²y+1,dy/dx=1/(dx/dy)=1/(tan²y+1)=1/(1+x²)。

如果函数x=f(y)x=f(y)在区间IyIy内单调、可导且f′(y)≠0f′(y)≠0,那么它的反函数y=f−1(x)y=f−1(x)在区间Ix={x|x=f(y),y∈Iy}Ix={x|x=f(y),y∈Iy}内也可导,且

[f−1(x)]′=1f′(y)或dydx=1dxdy

[f−1(x)]′=1f′(y)或dydx=1dxdy

这个结论可以简单表达为:反函数的导数等于直接函数导数的倒数。

三角函数求导公式:

(arcsinx)=1/(1-x^2)^1/2

(arccosx)=-1/(1-x^2)^1/2

(arctanx)=1/(1+x^2)

(arccotx)=-1/(1+x^2)

(arcsecx)=1/(|x|(x^2-1)^1/2)

(arccscx)=-1/(|x|(x^2-1)^1/2)

arcsinx求导

免责声明:本站内容(文字信息+图片素材)来源于互联网公开数据整理或转载,仅用于学习参考,如有侵权问题,请及时联系本站删除,我们将在5个工作日内处理。

联系邮箱:chuangshanghai#QQ.COM(把#换成@)

Copyright © 卖艺吧 版权所有