导数的基本公式
发布时间:2025-09-06 20:42:01

导数的基本公式有什么?让我们一起了解一下吧。

导数基本公式:1、y=c(c为常数)y'=0;2、y=x^ny'=nx^(n-1);3、y=a^xy'=a^xlna,y=e^xy'=e^x;4、y=logaxy'=logae/x,y=lnxy'=1/x;5、y=sinxy'=cosx;6、y=cosxy'=-sinx;7、y=tanxy'=1/cos^2x;8、y=cotxy'=-1/sin^2x;9、y=arcsinxy'=1/√1-x^2;10、y=arccosxy'=-1/√1-x^2;11、y=arctanxy'=1/1+x^2;12、y=arccotxy'=-1/1+x^2。

导数是函数的局部性质,一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

今天的分享就是这些,希望能帮助到大家。

导函数的基本公式

免责声明:本站内容(文字信息+图片素材)来源于互联网公开数据整理或转载,仅用于学习参考,如有侵权问题,请及时联系本站删除,我们将在5个工作日内处理。

联系邮箱:chuangshanghai#QQ.COM(把#换成@)

Copyright © 卖艺吧 版权所有