微分方程的通解怎么求
发布时间:2025-08-29 08:15:19
关于一阶微分方程:
齐次方程使用分离变量法,把x,y挪到各自zhi一边,各自求积分
变量代换法(令u=y/x)
非齐次方程,使用公式法,y=e^(-∫p(x)dx)(c+e^(-∫p(x)q(x)dx)
还有一些特殊的,比如伯努利方程
拓展资料
二阶齐次方程,
代换法
令y'=p,则y''=pdp/dy
层层积分法,
二阶非齐次,使用公式法
形如y''+qy'+py=Q(x)
先求齐次方程通解,
先求特征根:r^2+qr+p=0
则齐次方程通解为:
c1e^(r1x)+c2e^(r2x)有两不等实根
(c1+c2x)1e^(r1x)有两等实根
e^(r1x)(c1cosr2x+c2sinr2x)有虚根r1+ir2
再求特解
如果特征根与Q(x)指数有一个相等,则可设特解为xQ(x)
如果特征根与Q(x)指数有2个相等,则可设特解为x^2Q(x)
如果特征根与Q(x)指数有没个相等,则可设特解为Q(x)
通解=特解+齐次方程解。